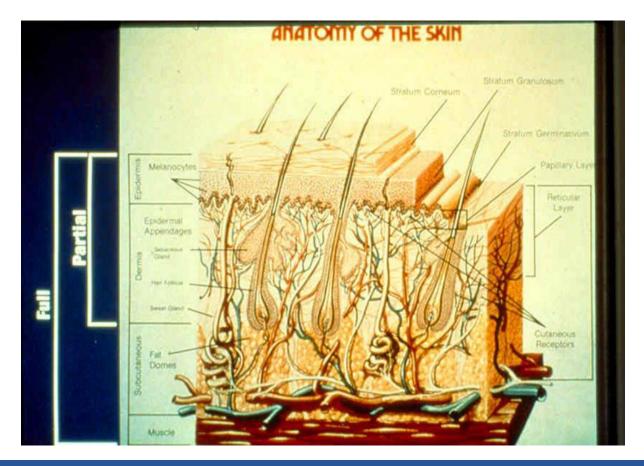
Burn Wound Rounds

Kimberly Burton, PAC

Burn Wound Rounds

No Financial Disclosures


Burn Wound Rounds

7 year old boy sustained flame full thickness burns to face, bilateral arms, bilateral hands, chest, abdomen, back, bilateral buttocks, bilateral legs, from playing with gasoline and matches with 16 year old brother TBSA 75%

Burn Wound Rounds Your Skin

Burn Wound Rounds New Terminology of Burn Depth

Superficial = 1st Degree

Partial Thickness = 2nd Degree

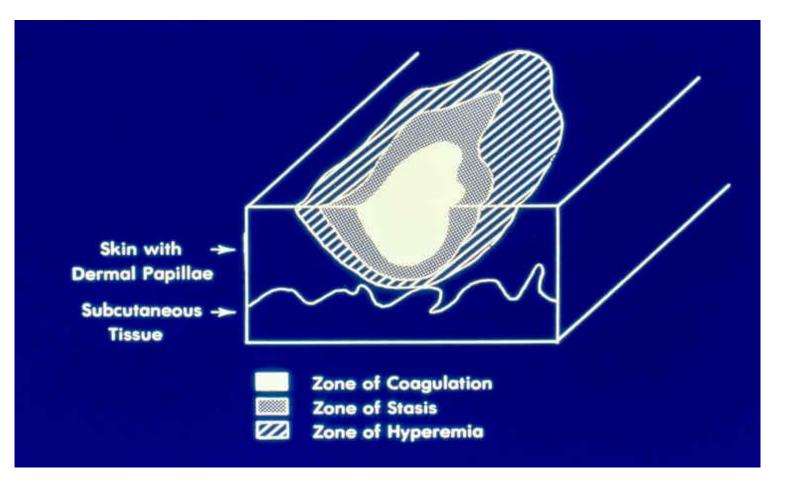
- Superficial
- Deep

Full Thickness = 3rd Degree Sub-Dermal = 4th Degree

Burn Wounds Rounds Burn Depth

- Factors
- Temperature
- **Duration of contact**
- **Dermal thickness**
- **Blood supply**

Special consideration: elderly and very young have thinner skin


Determinants of Burn Depth

Duration of contact can be short

Nater Temperature	Time for a third degree burn to occur
100°F 37°C	Safe temperature for bathing
120°F 48°C	5 minutes
127°F 52°C	1 minute
130°F 54°C	10 second
140°F 60°C	3 seconds
155°F 68°C	1 second
O American Burn Association 2	1018. All rights reserved. All S. Pedunic Injures

Zones of Cellular Injury

Zones of Stasis

Superficial Partial Thickness First Degree Burns

Cause: Exposure to sunlight

Color: Red

Dry or small blisters

Sensation:

Surface:

Healing:

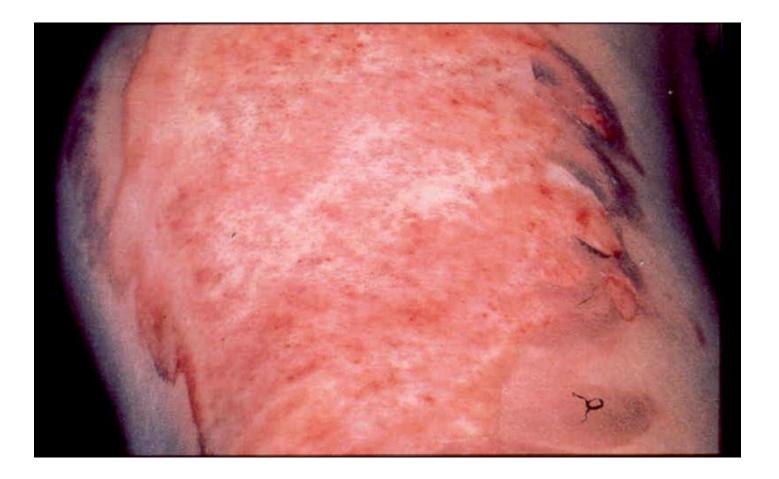
Painful 3-6 days

Partial Thickness Burns (2nd degree burn)

Cause: Exposure to hot liquid, flash, flame, or

chemical agent

- Color: Pink or mottled
- Surface: Moist, weeping surface
- Sensation: Painful +/- loss of sensation (pressure +, pinprick -)
- Healing: Superficial 10 to 21 days Deep - >21 days +/- graft



Superficial Partial Thickness Burn

Deep-Partial Thickness Burn

Full Thickness Burns (3rd degree burn)

Subdermal Burn

High-voltage electrical burns prolonged exposure to flame

Mummified, charred

Requires debridement, amputation, and possible flap

Determine Burn Severity

Amount of body surface area burned

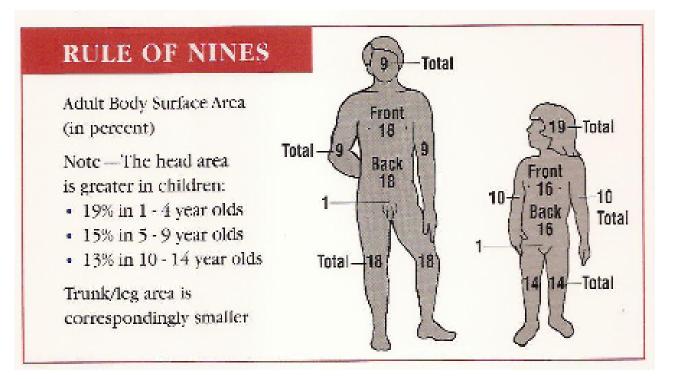
Depth of injury

- Age: Adult vs. pediatric
- Pre-existing medical conditions
- Associated trauma trauma = priority!
- Burns to face, hands, genitalia, feet

Circumferential

Estimate the Extent of the Burn

Total body surface area (TBSA) only estimated for partial or full thickness burns (2nd or 3rd degree)


Rule of nines

Lund and Browder chart

Modifications required for children vs. adults in all diagrams

Determine TBSA %

Extent of Burn

Patient's palmer surface (hand + fingers) 1% TBSA

Electrical Injuries

High voltage > 1000 volts:

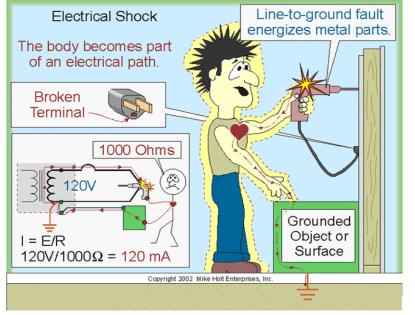
- Local tissue injury
- EKG non-specific ST changes

Low voltage < 1000 volts:

- Local tissue injury
- Deep tissue destruction

Type if current

 Alternating / AC more dangerous causes tetany, respiratory muscle paralysis, death from ventricular fibrillation.


• Direct / DC

Sequelae:

Dysrhythmia

Compartment Syndrome Myoglobinuria

Electrical Injuries Low Voltage Injury

Electrical Injury High Voltage Injury

Myoglobinuria

Electrical injury; extensive soft tissue injury

- Can lead to renal failure
- Diagnosis: Urinalysis, CPK, myoglobin

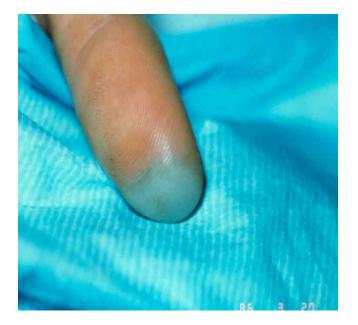
Treatment:

- Maintain high urine output
 75-100 cc/hr
- Mannitol as needed
- Alkalinize urine (pH <u>></u> 6)

Chemical Burn Injuries

Exposure to noxious chemicals

- Alkalis Industrial cleaners, fertilizers
- Acids Industrial cleaners, rust removers
- Organic phenols, petroleum


Severity of burn

Substance, concentration, volume, duration

Chemical Burns

Treatment of Chemical Burns

- Protect yourself
- Definitive treatment Remove the chemical
- Brush off powder agents
- Continuously irrigate with copious amounts of water while removing clothing 30-60 min
- Avoid neutralizing agents (heat production)
- General principle: If it still hurts, its still burning
- Burning process will continue until chemical is removed

Tar Burns

Contact burns – occur in roofers Non-toxic

Treatment

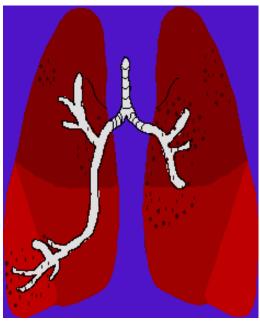
Cool with cold water

- Tar removal is not an emergency
- Adherent tar covered with petroleum-based ointment to facilitate emulsification and removal

Inhalation Injury

- 60-70% burn mortalities
- Manifested in first five days after injury
- Significant cause of morbidity and mortality
- Significantly increases mortality
- 20-50% burn admissions


Types of Inhalation Injury


Supraglottic – most common

- Injury above the glottis
 Infraglottic
- Injury below the glottis

Carbon monoxide poisoning

Inhalation injury doubles mortality

Inhalation Injury

- Upper airway (above the glottis)
- Above the vocal cords
- Edema may occlude airway
- Early intubation is important
- o Flash burns

Inhalation Injury

Lower airway (below the glottis)

- Almost always chemical injury
- Aldehydes, soot, sulfur oxides and phosgenes adhere to surface of smoke particles and diffuse deep into the lungs causing direct damage to epithelium of large airways
- Enclosed spaces, house fires

Inhalation Injury Carbon Monoxide Poisoning

Most fire scene fatalities are due to asphyxiation and / or CO poisoning

CO binds to Hbg with an affinity 200 times greater than O2

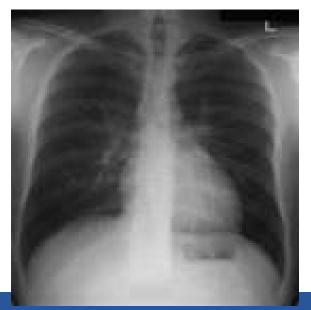
Tissue hypoxia occurs

Oxygen saturation is usually normal

Treatment 100% non-rebreather: decreases half-life by five times

Inhalation Injury Physical Examination

Carbonaceous sputum Facial burns, singed nasal hairs Agitation (hypoxia) Tachypnea, intercostal retraction Hoarseness Rales, rhonchi, \downarrow breath sounds Naso- Oro- pharyngeal erythema Inability to swallow



Inhalation Injury

Chest X-rays are normal with patients with Inhalation Injury within 24 -48 hours

Important to make sure Endotracheal tube is secured

Criteria for Intubation

High RR, low SaO2, high CO2 **Enclosed** space Loss of consciousness Carbonaceous sputum **Exposure to noxious chemicals** Inability to protect airway TBSA > 40%

Inhalation Injury Case Report

50 yr old man, homeless, fell asleep by fire

Rolled into fire

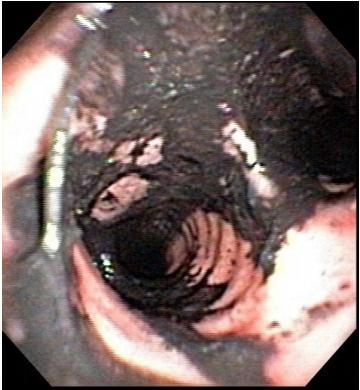
Pulled from flames by bystanders

Brought to UCIMC as critical trauma

Face, left hand and thigh direct contact with fire sustained very deep burns

Severe Inhalation Injury

Inhalation Injury Case Report


Hospital Day: 1

Intubated in ED

Resuscitation

Bronchoscopy performed

Severe smoke inhalation with soot

Inhalation Injury Case Report

Hospital Day: 3

Patient becomes profoundly hypoxic

O2 Sats 75 – 80% on maximal vent settings: PEEP 15, PCV 1:1, PIPs > 40

• pH 7.32, pCO₂ 52, pO₂ 43, HCO₃ 26, BE -1, O₂Sat 79%

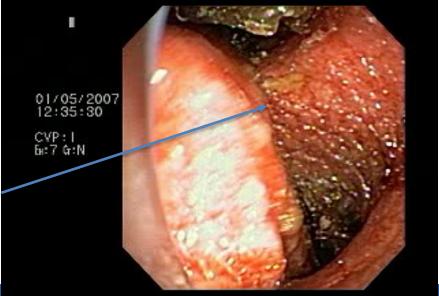
High-Frequency Oscillating Vent initiated

• pH7.20, pCO₂69, pO₂72 , HCO₃26 , BE -3, O₂Sat 91%

Nitric Oxide initiated 20 ppm

• pH 7.25, pCO₂ 56, pO₂ 183, HCO₃ 24, BE -4, O₂sat 99%

Inhalation Injury Case Report

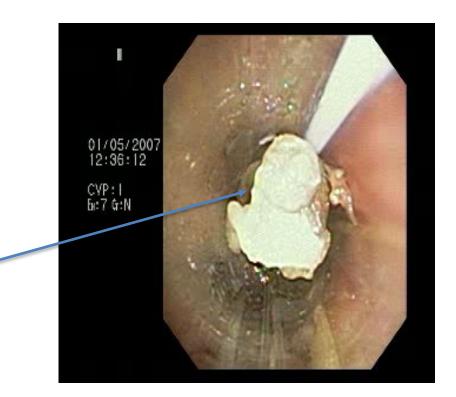

Hospital Day: 7

HFOV maintained

Extensive mucosal ulceration, sloughing, granulation

Serial bronchoscopy

Abnormal mucosa, edema, granulation


Inhalation Injury Case Study

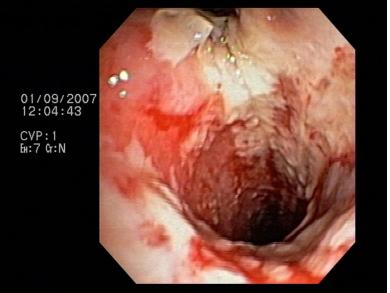
Hospital Day:11

Mucous plugs

Warning sign

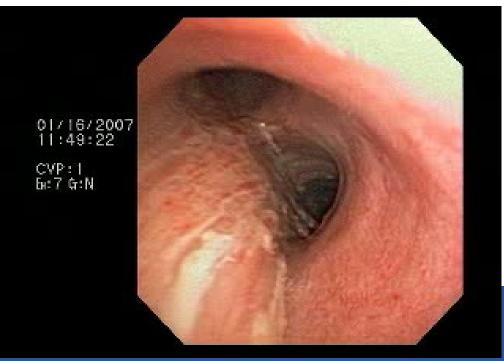
- Rising pCO2
- Immediate bronch

Mucous plug in endotracheal tube



Inhalation Injury Case Study

Hospital 11


Following bronchoscopy with removal of plugs

Inhalation Injury Hospital Course: Day 18 Healing

Patient transitioned from HFOV ~ 3 weeks Required tracheotomy once on standard vent Weaned from ventilator Discharged from hospital after 4 months

Fluid Resuscitation

- Prehospital and during primary in-hospital triage
 If burn clearly exceeds 20% TBSA, use the following initial LR fluid rates:
- 5 years old and younger: 125 ml per hour
- 6 13 years old: 250 ml per hour
- 14 years and older: 500 ml per hour (considered as adults)

(once weight and TBSA are known)

Category	Age and weight	Adjusted fluid rate
Flame or scald	Adults and older children (≥14 years old)	2 ml LR x kg x % TBSA
	Children (<14 years old)	3 ml LR x kg x % TBSA
	Infants and young children (≤30kg)	3 ml LR x kg x % TBSA Plus D ₅ LR at maintenance rate
Electrical injury	All ages	4 ml LR x kg x % TBSA

© American Burn Association 2018. All rights reserved. ABLS Pediatric Injuries

Fluid Resuscitation Pediatrics

- 4ml/hour for each kg up to 10 kg
- 2ml/hour for each kg from 11 20 kg
- I ml/hour for each kg > 20kg

Fluid Resuscitation Urine Output

Adults and older children (> 30kg) 0.5 ml/kg/hour (30 - 50 ml/hour)

Smaller children (up to 30kg) 1 ml/kg/hour

Indwelling bladder catheter Incrementally increase or decrease

Fluid Resuscitation Case Study

Patient is 80% TBSA, baby weight 19kg

1. For resuscitation fluid, at what rate would you like to run the fluid

Fluid Resuscitation Case Study

Calculate the maintenance fluids for 24 hours

Fluid Resuscitation

Two large bore IVs anywhere (even through burns) Fluid of choice – LR

Anticipate increased fluid needs for trauma, electrical injury, resuscitation delay, prior dehydration, ETOH, very deep burns, peds. patients R/T larger surface area – evaporative loss

Fluid Resuscitation Complications

Fluid Overload (pediatric and elderly, patients with existing cardiac disease)

Exaggerates edema formation

Compromises local blood supply

Patient population requiring increased fluid resuscitation:

Inhalation injury, Deep burns, electrical injuries, Delay time to resuscitation, Multiple organ dysfunction

Prehospital Care

Stop the burning process

- Remove clothing from affected areas, irrigate 20-30 min
- Flush area in contact with chemicals with copious amounts of water
- Remove contact with electrical source
- **Universal precautions**
- Prevent hypothermia (clean dry sheet)
- Warm IV fluids when possible
- Pain management

Initial Management

Airway (jaw lift, chin thrust, oral airway) Breathing (breath sounds, 15 liters oxygen) Circulation (pulses, perfusion) C-spine (stabilize as necessary) Cardiac (electrical injuries) Disability (AVPU) **Expose and Examine** Fluid Resuscitation (IV access, burn OK), infuse with warm fluids.

Secondary Survey

Secondary Survey Head to Toe Survey Evaluate the Burn wounds Vitals Patient History (PMHX, Allergies, Medications, Last Meal, Events, Tetanus Preceding The Injury) After everything is stable and if able Woods Lamp and looking in the ears is another important part the physical exam

History and Physical

History: Unconscious?

Noxious Chemicals?

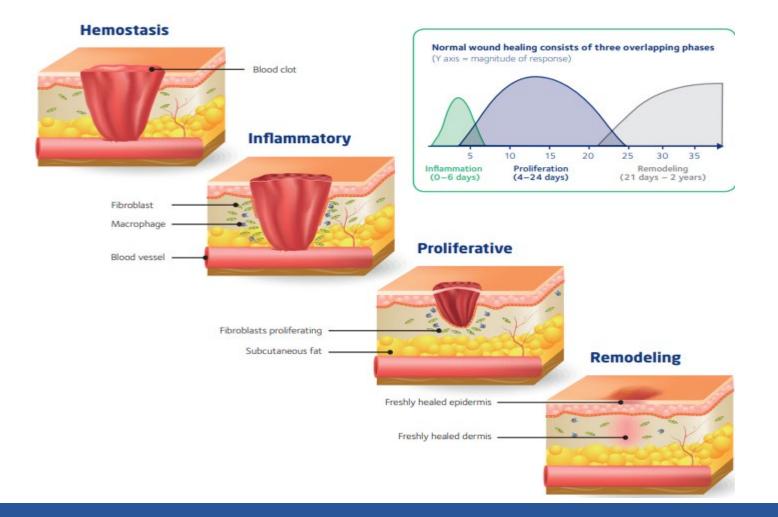
Enclosed Space?

Medical History

"AMPLE"

- A llergies (Sulfa)
- M edications
- P revious Illnesses (PMH), Tetanus status
- Last Meal or Drink
- **E vents Preceding Injury**

Risks of Hypothermia


No need to wash Cold water soaks only effective if applied within 10 minutes of burn, may decrease tissue damage Continuous flushing with water in chemical burns Cover with a warm, dry blanket for burns *less than* 20%

TBSA

Warming blankets and warmed fluids for burns greater than 20% TBSA

Normal Reparative Wound Healing Process

Burn Dressings

Burns > 20% clean dry sheet

Burns < 20% Vaseline gauze (cuts pain) or dry dressing

Remove blisters if patient is **not** being admitted to burn unit, and dress with recommended topicals. (i.e. Santylcollagenase/ bacitracin/ SSD cream)

Burn Dressings

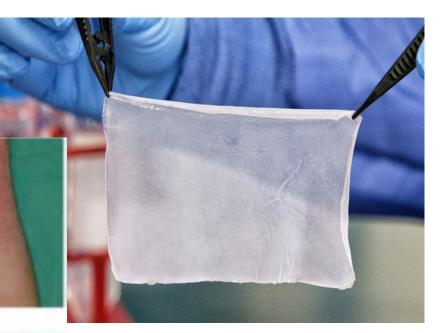
Burn Wound Rounds Epidermal Cultured Autograft

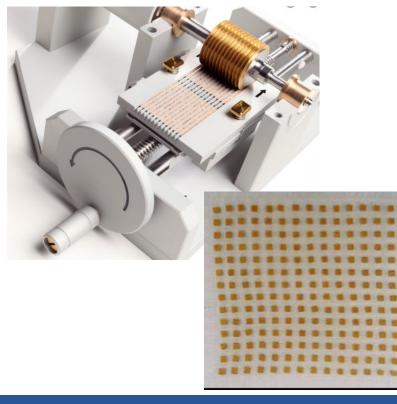
Epicel

BTM Biodegradeable Temporising Matrix

Integra

Burn Wound Rounds Strata Graft





0.0

Day 0 Day 0 Day 28 Dost-excision

Meek Skin Graft

Recell

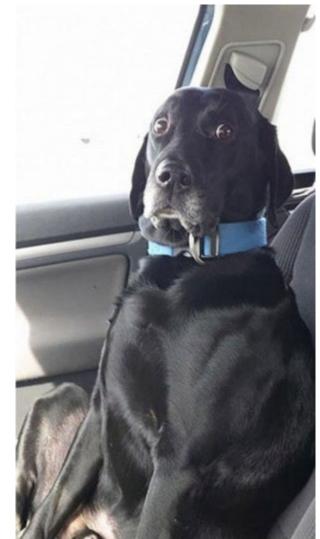
Nexobrid

Burn Wound Rounds Split thickness skin grafts and donor sites

Burn Wound Rounds Graft Loss

Infection

Uncontrolled diabetes


Hematoma

Wound bed not well prepared for graft

Any trauma to the skin graft

Poor nutrition Poor circulation

Rehabilitation-ARU

Burn Wound Rounds Outpatient Referrals

- Patient must have an appointment to be seen in clinic
- Referrals to Hydrotherapy Clinic for burn and wounds
- Cannot have same day ER/outpatient visits
- -Patient is usually, but not always, seen on the next business day. Delays are usually due to insurance authorizations.
- -Please prescribe enough pain medicine/topicals for these delays. Train caregiver in dressing changes.
- -Have patient call the clinic the next business day in the morning for an appt., 456-66170
- Fax an order for treatment to 456-5979

Burn recovery resources

- School Reentry
- Burn Support Group
- Peer Burn Support Services
- Pet Therapy Services
- World Burn Congress yearly
- Pediatric burn camps, Angel Faces with Barbara Quayle

Twilight Picnic

Yearly Burn Patient Christmas Party

Burn Prevention- Education to the community Disaster-Austere preparedness

The Specialized Burn Team

Burn and Specialty Surgeons Pediatric Intensivist **Nursing Staff Nursing Educator** Physical and Occupational Therapists Dietician Speech Pathologist **Epidemiology and Infection Control Nurse Respiratory Therapists** Psychologist **Child Life Specialist** Pharmacist **Research Physicians** Case Manager Social Worker **Outpatient clinic staff** Acupuncture

Special Thanks to the physicians and burn team

The UCI Medical Center Burn Unit

Dedicated to the human spirit and the lives we touch.

©1994 Len Wayne

